yuzu/src/core/hle/service/psc/time/static.cpp
FearlessTobi 310c1f50be scope_exit: Make constexpr
Allows the use of the macro in constexpr-contexts.
Also avoids some potential problems when nesting braces inside it.
2024-02-19 16:00:46 +01:00

343 lines
15 KiB
C++

// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/k_shared_memory.h"
#include "core/hle/service/cmif_serialization.h"
#include "core/hle/service/psc/time/clocks/ephemeral_network_system_clock_core.h"
#include "core/hle/service/psc/time/clocks/standard_local_system_clock_core.h"
#include "core/hle/service/psc/time/clocks/standard_network_system_clock_core.h"
#include "core/hle/service/psc/time/clocks/standard_user_system_clock_core.h"
#include "core/hle/service/psc/time/manager.h"
#include "core/hle/service/psc/time/shared_memory.h"
#include "core/hle/service/psc/time/static.h"
#include "core/hle/service/psc/time/steady_clock.h"
#include "core/hle/service/psc/time/system_clock.h"
#include "core/hle/service/psc/time/time_zone.h"
#include "core/hle/service/psc/time/time_zone_service.h"
namespace Service::PSC::Time {
namespace {
constexpr Result GetTimeFromTimePointAndContext(s64* out_time, SteadyClockTimePoint& time_point,
SystemClockContext& context) {
R_UNLESS(out_time != nullptr, ResultInvalidArgument);
R_UNLESS(time_point.IdMatches(context.steady_time_point), ResultClockMismatch);
*out_time = context.offset + time_point.time_point;
R_SUCCEED();
}
} // namespace
StaticService::StaticService(Core::System& system_, StaticServiceSetupInfo setup_info,
std::shared_ptr<TimeManager> time, const char* name)
: ServiceFramework{system_, name}, m_system{system}, m_setup_info{setup_info}, m_time{time},
m_local_system_clock{m_time->m_standard_local_system_clock},
m_user_system_clock{m_time->m_standard_user_system_clock},
m_network_system_clock{m_time->m_standard_network_system_clock},
m_time_zone{m_time->m_time_zone},
m_ephemeral_network_clock{m_time->m_ephemeral_network_clock}, m_shared_memory{
m_time->m_shared_memory} {
// clang-format off
static const FunctionInfo functions[] = {
{0, D<&StaticService::GetStandardUserSystemClock>, "GetStandardUserSystemClock"},
{1, D<&StaticService::GetStandardNetworkSystemClock>, "GetStandardNetworkSystemClock"},
{2, D<&StaticService::GetStandardSteadyClock>, "GetStandardSteadyClock"},
{3, D<&StaticService::GetTimeZoneService>, "GetTimeZoneService"},
{4, D<&StaticService::GetStandardLocalSystemClock>, "GetStandardLocalSystemClock"},
{5, D<&StaticService::GetEphemeralNetworkSystemClock>, "GetEphemeralNetworkSystemClock"},
{20, D<&StaticService::GetSharedMemoryNativeHandle>, "GetSharedMemoryNativeHandle"},
{50, D<&StaticService::SetStandardSteadyClockInternalOffset>, "SetStandardSteadyClockInternalOffset"},
{51, D<&StaticService::GetStandardSteadyClockRtcValue>, "GetStandardSteadyClockRtcValue"},
{100, D<&StaticService::IsStandardUserSystemClockAutomaticCorrectionEnabled>, "IsStandardUserSystemClockAutomaticCorrectionEnabled"},
{101, D<&StaticService::SetStandardUserSystemClockAutomaticCorrectionEnabled>, "SetStandardUserSystemClockAutomaticCorrectionEnabled"},
{102, D<&StaticService::GetStandardUserSystemClockInitialYear>, "GetStandardUserSystemClockInitialYear"},
{200, D<&StaticService::IsStandardNetworkSystemClockAccuracySufficient>, "IsStandardNetworkSystemClockAccuracySufficient"},
{201, D<&StaticService::GetStandardUserSystemClockAutomaticCorrectionUpdatedTime>, "GetStandardUserSystemClockAutomaticCorrectionUpdatedTime"},
{300, D<&StaticService::CalculateMonotonicSystemClockBaseTimePoint>, "CalculateMonotonicSystemClockBaseTimePoint"},
{400, D<&StaticService::GetClockSnapshot>, "GetClockSnapshot"},
{401, D<&StaticService::GetClockSnapshotFromSystemClockContext>, "GetClockSnapshotFromSystemClockContext"},
{500, D<&StaticService::CalculateStandardUserSystemClockDifferenceByUser>, "CalculateStandardUserSystemClockDifferenceByUser"},
{501, D<&StaticService::CalculateSpanBetween>, "CalculateSpanBetween"},
};
// clang-format on
RegisterHandlers(functions);
}
Result StaticService::GetStandardUserSystemClock(OutInterface<SystemClock> out_service) {
LOG_DEBUG(Service_Time, "called.");
*out_service = std::make_shared<SystemClock>(m_system, m_user_system_clock,
m_setup_info.can_write_user_clock,
m_setup_info.can_write_uninitialized_clock);
R_SUCCEED();
}
Result StaticService::GetStandardNetworkSystemClock(OutInterface<SystemClock> out_service) {
LOG_DEBUG(Service_Time, "called.");
*out_service = std::make_shared<SystemClock>(m_system, m_network_system_clock,
m_setup_info.can_write_network_clock,
m_setup_info.can_write_uninitialized_clock);
R_SUCCEED();
}
Result StaticService::GetStandardSteadyClock(OutInterface<SteadyClock> out_service) {
LOG_DEBUG(Service_Time, "called.");
*out_service =
std::make_shared<SteadyClock>(m_system, m_time, m_setup_info.can_write_steady_clock,
m_setup_info.can_write_uninitialized_clock);
R_SUCCEED();
}
Result StaticService::GetTimeZoneService(OutInterface<TimeZoneService> out_service) {
LOG_DEBUG(Service_Time, "called.");
*out_service =
std::make_shared<TimeZoneService>(m_system, m_time->m_standard_steady_clock, m_time_zone,
m_setup_info.can_write_timezone_device_location);
R_SUCCEED();
}
Result StaticService::GetStandardLocalSystemClock(OutInterface<SystemClock> out_service) {
LOG_DEBUG(Service_Time, "called.");
*out_service = std::make_shared<SystemClock>(m_system, m_local_system_clock,
m_setup_info.can_write_local_clock,
m_setup_info.can_write_uninitialized_clock);
R_SUCCEED();
}
Result StaticService::GetEphemeralNetworkSystemClock(OutInterface<SystemClock> out_service) {
LOG_DEBUG(Service_Time, "called.");
*out_service = std::make_shared<SystemClock>(m_system, m_ephemeral_network_clock,
m_setup_info.can_write_network_clock,
m_setup_info.can_write_uninitialized_clock);
R_SUCCEED();
}
Result StaticService::GetSharedMemoryNativeHandle(
OutCopyHandle<Kernel::KSharedMemory> out_shared_memory) {
LOG_DEBUG(Service_Time, "called.");
*out_shared_memory = &m_shared_memory.GetKSharedMemory();
R_SUCCEED();
}
Result StaticService::SetStandardSteadyClockInternalOffset(s64 offset_ns) {
LOG_DEBUG(Service_Time, "called. This function is not implemented!");
R_UNLESS(m_setup_info.can_write_steady_clock, ResultPermissionDenied);
R_RETURN(ResultNotImplemented);
}
Result StaticService::GetStandardSteadyClockRtcValue(Out<s64> out_rtc_value) {
LOG_DEBUG(Service_Time, "called. This function is not implemented!");
R_RETURN(ResultNotImplemented);
}
Result StaticService::IsStandardUserSystemClockAutomaticCorrectionEnabled(
Out<bool> out_is_enabled) {
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_is_enabled={}", *out_is_enabled);
};
R_UNLESS(m_user_system_clock.IsInitialized(), ResultClockUninitialized);
*out_is_enabled = m_user_system_clock.GetAutomaticCorrection();
R_SUCCEED();
}
Result StaticService::SetStandardUserSystemClockAutomaticCorrectionEnabled(
bool automatic_correction) {
LOG_DEBUG(Service_Time, "called. automatic_correction={}", automatic_correction);
R_UNLESS(m_user_system_clock.IsInitialized() && m_time->m_standard_steady_clock.IsInitialized(),
ResultClockUninitialized);
R_UNLESS(m_setup_info.can_write_user_clock, ResultPermissionDenied);
R_TRY(m_user_system_clock.SetAutomaticCorrection(automatic_correction));
m_shared_memory.SetAutomaticCorrection(automatic_correction);
SteadyClockTimePoint time_point{};
R_TRY(m_time->m_standard_steady_clock.GetCurrentTimePoint(time_point));
m_user_system_clock.SetTimePointAndSignal(time_point);
m_user_system_clock.GetEvent().Signal();
R_SUCCEED();
}
Result StaticService::GetStandardUserSystemClockInitialYear(Out<s32> out_year) {
LOG_DEBUG(Service_Time, "called. This function is not implemented!");
R_RETURN(ResultNotImplemented);
}
Result StaticService::IsStandardNetworkSystemClockAccuracySufficient(Out<bool> out_is_sufficient) {
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_is_sufficient={}", *out_is_sufficient);
};
*out_is_sufficient = m_network_system_clock.IsAccuracySufficient();
R_SUCCEED();
}
Result StaticService::GetStandardUserSystemClockAutomaticCorrectionUpdatedTime(
Out<SteadyClockTimePoint> out_time_point) {
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. out_time_point={}", *out_time_point);
};
R_UNLESS(m_user_system_clock.IsInitialized(), ResultClockUninitialized);
m_user_system_clock.GetTimePoint(*out_time_point);
R_SUCCEED();
}
Result StaticService::CalculateMonotonicSystemClockBaseTimePoint(
Out<s64> out_time, const SystemClockContext& context) {
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. context={} out_time={}", context, *out_time);
};
R_UNLESS(m_time->m_standard_steady_clock.IsInitialized(), ResultClockUninitialized);
SteadyClockTimePoint time_point{};
R_TRY(m_time->m_standard_steady_clock.GetCurrentTimePoint(time_point));
R_UNLESS(time_point.IdMatches(context.steady_time_point), ResultClockMismatch);
auto one_second_ns{
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(1)).count()};
auto ticks{m_system.CoreTiming().GetClockTicks()};
auto current_time_ns{ConvertToTimeSpan(ticks).count()};
*out_time = ((context.offset + time_point.time_point) - (current_time_ns / one_second_ns));
R_SUCCEED();
}
Result StaticService::GetClockSnapshot(OutClockSnapshot out_snapshot, TimeType type) {
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. type={} out_snapshot={}", type, *out_snapshot);
};
SystemClockContext user_context{};
R_TRY(m_user_system_clock.GetContext(user_context));
SystemClockContext network_context{};
R_TRY(m_network_system_clock.GetContext(network_context));
R_RETURN(GetClockSnapshotImpl(out_snapshot, user_context, network_context, type));
}
Result StaticService::GetClockSnapshotFromSystemClockContext(
TimeType type, OutClockSnapshot out_snapshot, const SystemClockContext& user_context,
const SystemClockContext& network_context) {
SCOPE_EXIT {
LOG_DEBUG(Service_Time,
"called. type={} user_context={} network_context={} out_snapshot={}", type,
user_context, network_context, *out_snapshot);
};
R_RETURN(GetClockSnapshotImpl(out_snapshot, user_context, network_context, type));
}
Result StaticService::CalculateStandardUserSystemClockDifferenceByUser(Out<s64> out_difference,
InClockSnapshot a,
InClockSnapshot b) {
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. a={} b={} out_difference={}", *a, *b, *out_difference);
};
auto diff_s =
std::chrono::seconds(b->user_context.offset) - std::chrono::seconds(a->user_context.offset);
if (a->user_context == b->user_context ||
!a->user_context.steady_time_point.IdMatches(b->user_context.steady_time_point)) {
*out_difference = 0;
R_SUCCEED();
}
if (!a->is_automatic_correction_enabled || !b->is_automatic_correction_enabled) {
*out_difference = std::chrono::duration_cast<std::chrono::nanoseconds>(diff_s).count();
R_SUCCEED();
}
if (a->network_context.steady_time_point.IdMatches(a->steady_clock_time_point) ||
b->network_context.steady_time_point.IdMatches(b->steady_clock_time_point)) {
*out_difference = 0;
R_SUCCEED();
}
*out_difference = std::chrono::duration_cast<std::chrono::nanoseconds>(diff_s).count();
R_SUCCEED();
}
Result StaticService::CalculateSpanBetween(Out<s64> out_time, InClockSnapshot a,
InClockSnapshot b) {
SCOPE_EXIT {
LOG_DEBUG(Service_Time, "called. a={} b={} out_time={}", *a, *b, *out_time);
};
s64 time_s{};
auto res =
GetSpanBetweenTimePoints(&time_s, a->steady_clock_time_point, b->steady_clock_time_point);
if (res != ResultSuccess) {
R_UNLESS(a->network_time != 0 && b->network_time != 0, ResultTimeNotFound);
time_s = b->network_time - a->network_time;
}
*out_time =
std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(time_s)).count();
R_SUCCEED();
}
Result StaticService::GetClockSnapshotImpl(OutClockSnapshot out_snapshot,
const SystemClockContext& user_context,
const SystemClockContext& network_context,
TimeType type) {
out_snapshot->user_context = user_context;
out_snapshot->network_context = network_context;
R_TRY(
m_time->m_standard_steady_clock.GetCurrentTimePoint(out_snapshot->steady_clock_time_point));
out_snapshot->is_automatic_correction_enabled = m_user_system_clock.GetAutomaticCorrection();
R_TRY(m_time_zone.GetLocationName(out_snapshot->location_name));
R_TRY(GetTimeFromTimePointAndContext(&out_snapshot->user_time,
out_snapshot->steady_clock_time_point,
out_snapshot->user_context));
R_TRY(m_time_zone.ToCalendarTimeWithMyRule(out_snapshot->user_calendar_time,
out_snapshot->user_calendar_additional_time,
out_snapshot->user_time));
if (GetTimeFromTimePointAndContext(&out_snapshot->network_time,
out_snapshot->steady_clock_time_point,
out_snapshot->network_context) != ResultSuccess) {
out_snapshot->network_time = 0;
}
R_TRY(m_time_zone.ToCalendarTimeWithMyRule(out_snapshot->network_calendar_time,
out_snapshot->network_calendar_additional_time,
out_snapshot->network_time));
out_snapshot->type = type;
out_snapshot->unk_CE = 0;
R_SUCCEED();
}
} // namespace Service::PSC::Time