yuzu/src/video_core/host1x/ffmpeg/ffmpeg.cpp

352 lines
11 KiB
C++

// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/scope_exit.h"
#include "common/settings.h"
#include "core/memory.h"
#include "video_core/host1x/ffmpeg/ffmpeg.h"
#include "video_core/memory_manager.h"
extern "C" {
#ifdef LIBVA_FOUND
// for querying VAAPI driver information
#include <libavutil/hwcontext_vaapi.h>
#endif
}
namespace FFmpeg {
namespace {
constexpr AVPixelFormat PreferredGpuFormat = AV_PIX_FMT_NV12;
constexpr AVPixelFormat PreferredCpuFormat = AV_PIX_FMT_YUV420P;
constexpr std::array PreferredGpuDecoders = {
AV_HWDEVICE_TYPE_CUDA,
#ifdef _WIN32
AV_HWDEVICE_TYPE_D3D11VA,
AV_HWDEVICE_TYPE_DXVA2,
#elif defined(__unix__)
AV_HWDEVICE_TYPE_VAAPI,
AV_HWDEVICE_TYPE_VDPAU,
#endif
// last resort for Linux Flatpak (w/ NVIDIA)
AV_HWDEVICE_TYPE_VULKAN,
};
AVPixelFormat GetGpuFormat(AVCodecContext* codec_context, const AVPixelFormat* pix_fmts) {
for (const AVPixelFormat* p = pix_fmts; *p != AV_PIX_FMT_NONE; ++p) {
if (*p == codec_context->pix_fmt) {
return codec_context->pix_fmt;
}
}
LOG_INFO(HW_GPU, "Could not find compatible GPU AV format, falling back to CPU");
av_buffer_unref(&codec_context->hw_device_ctx);
codec_context->pix_fmt = PreferredCpuFormat;
return codec_context->pix_fmt;
}
std::string AVError(int errnum) {
char errbuf[AV_ERROR_MAX_STRING_SIZE] = {};
av_make_error_string(errbuf, sizeof(errbuf) - 1, errnum);
return errbuf;
}
} // namespace
Packet::Packet(std::span<const u8> data) {
m_packet = av_packet_alloc();
m_packet->data = const_cast<u8*>(data.data());
m_packet->size = static_cast<s32>(data.size());
}
Packet::~Packet() {
av_packet_free(&m_packet);
}
Frame::Frame() {
m_frame = av_frame_alloc();
}
Frame::~Frame() {
av_frame_free(&m_frame);
}
Decoder::Decoder(Tegra::Host1x::NvdecCommon::VideoCodec codec) {
const AVCodecID av_codec = [&] {
switch (codec) {
case Tegra::Host1x::NvdecCommon::VideoCodec::H264:
return AV_CODEC_ID_H264;
case Tegra::Host1x::NvdecCommon::VideoCodec::VP8:
return AV_CODEC_ID_VP8;
case Tegra::Host1x::NvdecCommon::VideoCodec::VP9:
return AV_CODEC_ID_VP9;
default:
UNIMPLEMENTED_MSG("Unknown codec {}", codec);
return AV_CODEC_ID_NONE;
}
}();
m_codec = avcodec_find_decoder(av_codec);
}
bool Decoder::SupportsDecodingOnDevice(AVPixelFormat* out_pix_fmt, AVHWDeviceType type) const {
for (int i = 0;; i++) {
const AVCodecHWConfig* config = avcodec_get_hw_config(m_codec, i);
if (!config) {
LOG_DEBUG(HW_GPU, "{} decoder does not support device type {}", m_codec->name,
av_hwdevice_get_type_name(type));
break;
}
if ((config->methods & AV_CODEC_HW_CONFIG_METHOD_HW_DEVICE_CTX) != 0 &&
config->device_type == type) {
LOG_INFO(HW_GPU, "Using {} GPU decoder", av_hwdevice_get_type_name(type));
*out_pix_fmt = config->pix_fmt;
return true;
}
}
return false;
}
std::vector<AVHWDeviceType> HardwareContext::GetSupportedDeviceTypes() {
std::vector<AVHWDeviceType> types;
AVHWDeviceType current_device_type = AV_HWDEVICE_TYPE_NONE;
while (true) {
current_device_type = av_hwdevice_iterate_types(current_device_type);
if (current_device_type == AV_HWDEVICE_TYPE_NONE) {
return types;
}
types.push_back(current_device_type);
}
}
HardwareContext::~HardwareContext() {
av_buffer_unref(&m_gpu_decoder);
}
bool HardwareContext::InitializeForDecoder(DecoderContext& decoder_context,
const Decoder& decoder) {
const auto supported_types = GetSupportedDeviceTypes();
for (const auto type : PreferredGpuDecoders) {
AVPixelFormat hw_pix_fmt;
if (std::ranges::find(supported_types, type) == supported_types.end()) {
LOG_DEBUG(HW_GPU, "{} explicitly unsupported", av_hwdevice_get_type_name(type));
continue;
}
if (!this->InitializeWithType(type)) {
continue;
}
if (decoder.SupportsDecodingOnDevice(&hw_pix_fmt, type)) {
decoder_context.InitializeHardwareDecoder(*this, hw_pix_fmt);
return true;
}
}
LOG_INFO(HW_GPU, "Hardware decoding is disabled due to implementation issues, using CPU.");
return false;
}
bool HardwareContext::InitializeWithType(AVHWDeviceType type) {
av_buffer_unref(&m_gpu_decoder);
if (const int ret = av_hwdevice_ctx_create(&m_gpu_decoder, type, nullptr, nullptr, 0);
ret < 0) {
LOG_DEBUG(HW_GPU, "av_hwdevice_ctx_create({}) failed: {}", av_hwdevice_get_type_name(type),
AVError(ret));
return false;
}
#ifdef LIBVA_FOUND
if (type == AV_HWDEVICE_TYPE_VAAPI) {
// We need to determine if this is an impersonated VAAPI driver.
auto* hwctx = reinterpret_cast<AVHWDeviceContext*>(m_gpu_decoder->data);
auto* vactx = static_cast<AVVAAPIDeviceContext*>(hwctx->hwctx);
const char* vendor_name = vaQueryVendorString(vactx->display);
if (strstr(vendor_name, "VDPAU backend")) {
// VDPAU impersonated VAAPI impls are super buggy, we need to skip them.
LOG_DEBUG(HW_GPU, "Skipping VDPAU impersonated VAAPI driver");
return false;
} else {
// According to some user testing, certain VAAPI drivers (Intel?) could be buggy.
// Log the driver name just in case.
LOG_DEBUG(HW_GPU, "Using VAAPI driver: {}", vendor_name);
}
}
#endif
return true;
}
DecoderContext::DecoderContext(const Decoder& decoder) : m_decoder{decoder} {
m_codec_context = avcodec_alloc_context3(m_decoder.GetCodec());
av_opt_set(m_codec_context->priv_data, "tune", "zerolatency", 0);
m_codec_context->thread_count = 0;
m_codec_context->thread_type &= ~FF_THREAD_FRAME;
}
DecoderContext::~DecoderContext() {
av_buffer_unref(&m_codec_context->hw_device_ctx);
avcodec_free_context(&m_codec_context);
}
void DecoderContext::InitializeHardwareDecoder(const HardwareContext& context,
AVPixelFormat hw_pix_fmt) {
m_codec_context->hw_device_ctx = av_buffer_ref(context.GetBufferRef());
m_codec_context->get_format = GetGpuFormat;
m_codec_context->pix_fmt = hw_pix_fmt;
}
bool DecoderContext::OpenContext(const Decoder& decoder) {
if (const int ret = avcodec_open2(m_codec_context, decoder.GetCodec(), nullptr); ret < 0) {
LOG_ERROR(HW_GPU, "avcodec_open2 error: {}", AVError(ret));
return false;
}
if (!m_codec_context->hw_device_ctx) {
LOG_INFO(HW_GPU, "Using FFmpeg software decoding");
}
return true;
}
bool DecoderContext::SendPacket(const Packet& packet) {
m_temp_frame = std::make_shared<Frame>();
m_got_frame = 0;
// Android can randomly crash when calling decode directly, so skip.
// TODO update ffmpeg and hope that fixes it.
#ifndef ANDROID
if (!m_codec_context->hw_device_ctx && m_codec_context->codec_id == AV_CODEC_ID_H264) {
m_decode_order = true;
auto* codec{ffcodec(m_decoder.GetCodec())};
if (const int ret = codec->cb.decode(m_codec_context, m_temp_frame->GetFrame(),
&m_got_frame, packet.GetPacket());
ret < 0) {
LOG_DEBUG(Service_NVDRV, "avcodec_send_packet error {}", AVError(ret));
return false;
}
return true;
}
#endif
if (const int ret = avcodec_send_packet(m_codec_context, packet.GetPacket()); ret < 0) {
LOG_ERROR(HW_GPU, "avcodec_send_packet error: {}", AVError(ret));
return false;
}
return true;
}
std::shared_ptr<Frame> DecoderContext::ReceiveFrame() {
// Android can randomly crash when calling decode directly, so skip.
// TODO update ffmpeg and hope that fixes it.
#ifndef ANDROID
if (!m_codec_context->hw_device_ctx && m_codec_context->codec_id == AV_CODEC_ID_H264) {
m_decode_order = true;
auto* codec{ffcodec(m_decoder.GetCodec())};
int ret{0};
if (m_got_frame == 0) {
Packet packet{{}};
auto* pkt = packet.GetPacket();
pkt->data = nullptr;
pkt->size = 0;
ret = codec->cb.decode(m_codec_context, m_temp_frame->GetFrame(), &m_got_frame, pkt);
m_codec_context->has_b_frames = 0;
}
if (m_got_frame == 0 || ret < 0) {
LOG_ERROR(Service_NVDRV, "Failed to receive a frame! error {}", ret);
return {};
}
} else
#endif
{
const auto ReceiveImpl = [&](AVFrame* frame) {
if (const int ret = avcodec_receive_frame(m_codec_context, frame); ret < 0) {
LOG_ERROR(HW_GPU, "avcodec_receive_frame error: {}", AVError(ret));
return false;
}
return true;
};
if (m_codec_context->hw_device_ctx) {
// If we have a hardware context, make a separate frame here to receive the
// hardware result before sending it to the output.
Frame intermediate_frame;
if (!ReceiveImpl(intermediate_frame.GetFrame())) {
return {};
}
m_temp_frame->SetFormat(PreferredGpuFormat);
if (const int ret = av_hwframe_transfer_data(m_temp_frame->GetFrame(),
intermediate_frame.GetFrame(), 0);
ret < 0) {
LOG_ERROR(HW_GPU, "av_hwframe_transfer_data error: {}", AVError(ret));
return {};
}
} else {
// Otherwise, decode the frame as normal.
if (!ReceiveImpl(m_temp_frame->GetFrame())) {
return {};
}
}
}
#if defined(FF_API_INTERLACED_FRAME) || LIBAVUTIL_VERSION_MAJOR >= 59
m_temp_frame->GetFrame()->interlaced_frame =
(m_temp_frame->GetFrame()->flags & AV_FRAME_FLAG_INTERLACED) != 0;
#endif
return std::move(m_temp_frame);
}
void DecodeApi::Reset() {
m_hardware_context.reset();
m_decoder_context.reset();
m_decoder.reset();
}
bool DecodeApi::Initialize(Tegra::Host1x::NvdecCommon::VideoCodec codec) {
this->Reset();
m_decoder.emplace(codec);
m_decoder_context.emplace(*m_decoder);
// Enable GPU decoding if requested.
if (Settings::values.nvdec_emulation.GetValue() == Settings::NvdecEmulation::Gpu) {
m_hardware_context.emplace();
m_hardware_context->InitializeForDecoder(*m_decoder_context, *m_decoder);
}
// Open the decoder context.
if (!m_decoder_context->OpenContext(*m_decoder)) {
this->Reset();
return false;
}
return true;
}
bool DecodeApi::SendPacket(std::span<const u8> packet_data) {
FFmpeg::Packet packet(packet_data);
return m_decoder_context->SendPacket(packet);
}
std::shared_ptr<Frame> DecodeApi::ReceiveFrame() {
// Receive raw frame from decoder.
return m_decoder_context->ReceiveFrame();
}
} // namespace FFmpeg